http://eco.com.ua Секція №6

УДК [66.081.63: 546.27]628.1

Бабак Ю. В., Мельник Л. А, Гончарук В. В. (Украина, Киев)

ИЗВЛЕЧЕНИЕ СОЕДИНЕНИЙ БОРА ИЗ ВОДЫ В ПРОЦЕССЕ БАРОМЕМБРАННОЙ ОБРАБОТКИ

Как известно, наиболее экономически целесообразным методом получения пресной воды из морской и солоноватой воды является обратный осмос [1]. Однако, в то время как задерживающая способность этого метода по основным солям составляет 98% и выше, задержка бора в традиционных условиях составляет лишь 40-60% [2, 3]. Это приводит к тому, что пермеат обратноосмотических установок не удовлетворяет существующие требования к качеству питьевых и поливных вод по содержанию этого компонента [3].

Исходя из медицинских показателей, в 1993 ВООЗ установила предельную концентрацию бора в питьевой воде на уровне 0,3 мг/дм³, когда еще не было известно о низкой степени удаления бора в процессе подготовки питьевой воды. В 1998 году этот показатель был увеличен до 0,5 мг/дм³ и был определен как временный, поскольку с существующими технологиями сложно достичь глубокой очистки в регионах с высоким природным содержанием бора в воде [4]. Согласно [5], безопасная концентрация бора в воде для полива чувствительных растений составляет 0,3 мг/дм³.

Для достижения таких низких концентраций бора в пермеате обратноосмотических установок требуется его доочистка, с целью чего в настоящее время разработано два метода [1].

Первый из них - обратноосмотическое опреснение пермеата в сильнощелочной среде. Это решение является приемлемым с экономической точки зрения, однако, оно не всегда может быть применено из-за невозможности повышения рН до 10 или 11 ввиду опасности осадкообразования и снижения срока службы мембран.

Вторым известным способом кондиционирования пермеата обратноосмотических установок по содержанию бора является сорбционная обработка с использованием борселективних синтетических органических смол N-метилглюкаминового типа. Этот метод позволяет получать пермеаты с концентрацией бора ниже 0,1 мг/дм³.

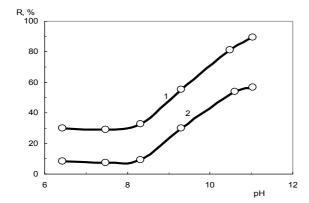
Недостатком данного способа является необходимость двухстадийной (кислота, щелочь) регенерации и значительный расход реагентов, ввиду чего его применение экономически оправданно лишь в случае использования небольших количеств сорбента (доочистка небольших объемов пермеата) [1].

В связи с вышесказанным, для решения проблемы бора в пермеате и снижения затрат на этот процесс в современных обратноосмотических установках практикуется параллельное использование узлов борселективной сорбции и обратноосмотической обработки при высоких значениях рН [1, 3].

Как показал анализ современной научной литературы, в настоящее время экономически эффективная схема удаления бора в установках обратноосмотического опреснения морской воды окончательно не определена. Решение о выборе метода удаления бора должно приниматься в каждом конкретном случае, в зависимости от типа применяемых мембран, состава исходной воды и требований к содержанию бора в опресненной воде, а также с учетом сравнения всех экономических параметров.

Следует особенно отметить, что кроме экономической составляющей при выборе метода удаления бора должны быть учтены и экологические аспекты, поскольку, как уже отмечалось выше, регенерация борселективных сорбентов требует больших расходов реагентов, в результате чего образуется значительное количество разбавленных по бору кислых регенерационных растворов. Утилизация соединений бора из этих растворов экономически нецелесообразна, вследствие чего они сбрасываются в сточные воды и становятся источником вторичного загрязнения окружающей среды.

Таким образом, включение в схему получения питьевой воды стадии сорбционной доочистки пермеата от соединений бора с использованием борселективных сорбентов должно обязательно предусматривать переработку борсодержащих регенерационных растворов с целью утилизации их компонентов и повышения экологической безопасности процесса подготовки питьвой воды.


Цель настоящей работы заключалась в исследовании возможностей мембран ESPA-1 (Hydronautics, США) и ОПМН-П (Россия, ЗАО НТЦ "Владипор") в плане удаления бора при баромембранной очистке борсодержащих природных вод и разработке предложений по получению пермеатов, соответствующих качеству питьевой воды по содержанию данного компонента. Выбор указанных мембран в качестве объектов исследования связан с тем, что они являются наиболее доступными и часто используются в настоящее время в Украине для опреснения солоноватых вод. Кроме того, целью настоящего исследования являлась также разработка эффективного метода переработки борсодержащих регенерационных растворов, образующихся в процессе селективного извлечения бора из воды.

Опыты по баромембранной обработке борсодержащих модельных растворов осуществляли в непроточной («тупиковой») цилиндрической ячейке емкостью $365,5\,$ см 3 . Площадь мембраны в ней составляла $38,5\,$ см 2 . Ячейка оборудована перемешивающим устройством и расположена над магнитной мешалкой. Скорость оборотов мешалки поддерживали равной $300\pm 5\,$ об/мин. Рабочее давление задавали сжатым азотом и контролировали образцовым манометром с точностью $\pm\,$ 0,01 МПа. Модельный раствор содержал $20\,$ мг/дм $^3\,$ бора (вводился в виде H_3BO_3) и $1\,$ г/дм $^3\,$ хлорида натрия, pH растворов регулировали добавлением раствора NaOH.

Концентрацию бора в процессе экспериментов контролировали титриметрическим методом с применением маннита, а также колориметрическим методом с использованием кармина [6].

http://eco.com.ua

На рис. 1 представлены зависимости коэффициента задержания бора мембранами ESPA-1 и ОПМН-П от рН обрабатываемого раствора.

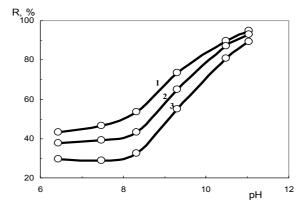


Рис.1.— Зависимость коэффициента задержания бора мембраной ESPA-1 (1) и ОПМН-П (2) от рН. Степень отбоа пермеата — 75 %; P-1,5 МПа

Рис.2. — Зависимость коэффициента задержания бора мембраной ESPA-1 от pH при различных степенях отбора пермеата: 1 - 25%; 2 - 50%; 3 - 75%. P - 1,5 МПа

Как видно из рисунка, в нейтральной и слабощелочной области pH коэффициент задержания бора мембраной ESPA-1 составляет около 30%, а мембраной ОПМН-П — лишь 10 %. При pH > 9 этот показатель существенно увеличивается для обоих типов мембран, что связано с повышением диссоциации слабой борной кислоты. Коэффициент задержания бора мембранами ESPA-1 и ОПМН-П при pH 11 составляет соответственно 89,3 и 56,5 % при степени отбора пермеата 75 %.

Как видно из рисунка 2, коэффициент задержания бора мембраной ESPA-1 существенно уменьшается с увеличением степени отбора пермеата.

При рН 11 данная характеристика составляет 94,8, 93,5 и 89,3% при степени отбора пермеата соответственно 25, 50 и 75%.

Аналогичная закономерность получена также для мембраны ОПМН-П (коэффициент задержания уменьшается от 69,5 до 56,5%).

Результаты исследования зависимости коэффициента задержания бора мембраной ESPA-1 от исходной концентрации бора в растворе представлены в табл. 1.

Таблица 1 — Зависимость коэффициента задержания бора и остаточной концентрации бора в пермеате от исходной концентрации бора в обрабатываемом растворе при использовании мембраны ESPA-1

(pH = 11; степень отбора пермеата – 50 %; P – 1,5 МПа) R, % исх., мг/дм pН ра перм., мг/дм 11,0 82,5 0,21 1,2 1,2 10,5 81,7 0,22 2,0 11,0 87,0 0,26 10,5 0,40 2,0 80,0 11,0 89,0 0,54 5,0 6,0 11,0 89,0 0,65 10,0 11,0 91,4 0,8 20,0 91,3 1,7 11,0 40,0 11,0 92,4 3,0 90,0 100,0 11,0 10,0 11,0 500,0 90,0 50.0

Как видно из таблицы, при увеличении концентрации бора в исходном растворе с 1,2 до 10 мг/дм³ коэффициент задержания бора повышается с 82,5 до 91,4%. Однако, даже при осуществлении процесса опреснения в сильнощелочной среде (pH=11) с использованием мембраны ESPA-1 невозможно получить пермеат, содержащий 0,5 мг/дм³ бора и менее, если концентрация бора в исходной воде превышает 5 мг/дм³.

В этом случае является необходимым кондиционирование пермеата с использованием борселективных смол N-метилглюкаминового типа.

Как уже отмечалось, существенным недостатком сорбционного метода является образование кислых борсодержащих регенерационных растворов, являющихся источником вторичного загрязнения окружающей среды. С целью устранения этого недостатака нами разработан способ утилизации данных растворов, который состоит в следующем:

Регенерационный раствор, содержащий около 580 мг/дм³ бора и 0,12 моль/дм³ соляной кислоты, подают в циркуляционном режиме в камеры обессоливания электродиализного аппарата с целью отделения кислоты

http://eco.com.ua Секція №6

регенеранта от борной кислоты. Камеры концентрирования заполняют дистиллированной водой. Полученный концентрат кислоты - регенеранта после разведения может быть повторно использован для регенерации сорбента.

Полученный при разделении борной и соляной кислот диализат, содержащий 540 мг/дм³ бора и 0,01 моль/дм³ соляной кислоты, обрабатывают 10% раствором CaO до pH 9,5-10,5 и направляют в камеру обессоливания электродиализного аппарата в прямоточном режиме с целью максимального концентрирования соединений бора. В камеры обессоливания, расположенные слева и справа от основной камеры обессоливания, подают раствор хлорида натрия с целью избегания осадкообразования в камерах концентрирования. Камеры концентрирования предварительно заполняют дистиллированной водой.

Преимущества разработанной технологической схемы переработки кислого борсодержащего регенерационного раствора по сравнению с известной [7, 8] состоят в том, что вся последовательность операций и режимы электродиализной обработки обеспечивают:

повышение степени концентрирования соединений бора в 1,7-1,8 раз (при одновременном исключении образования малорастворимого бората кальция в камерах концентрирования электродиализатора), что приводит при дальнейшей переработке к увеличению выхода ценного бората кальция в твердую фазу и уменьшению приблизительно в 2 раза потерь бора с маточным раствором;

снижение почти на порядок pH раствора, который направляется для концентрирования соединений бора, что существенно снижает затраты щелочного реагента и обеспечивает оптимальные условия эксплуатации мембран при одновременном сохранении высоких коэффициентов извлечения бора (89,6-96,4%).

Выводы. Полученные результаты являются основой для разработки рекомендаций по обратноосмотическому опреснению борсодержащих вод с использованием мембран ESPA-1, а также разработки общей технологической схемы удаления бора из природных вод с целью повышения эффективности удаления бора и минимизации экологических рисков.

СПИСОК ЛІТЕРАТУРИ

- 1. Taniguchi M., Fusaoka Y., Nishikawa T., Kurihara M. //Desalination. 2004. 167. P. 419-426.
- 2. Oren Y., Linder C., Daltrophe N., Mirsky Y., Skorka J. and Kedem O. //Desalination.-2006.-199, N 1-3. P 52-54.
- 3. Мельник Л.А.//Химия и технология воды. 2010. 32, № 5. С. 559-571.
- 4. Guidelines for drinking water quality, 3rd ed., vol. 1. Recommendations. WHO: Geneva, 2004. 494 p.
- 5. Ozturk N., Kavak D., Kose T. E. // Desalination 2008 223. P. 1-9.
- 6. Резников А.А., Муликовская Е.П., Соколов И.Ю. Методы анализа прородных вод.- М.: Госгеолтехиздат, 1963.- 404 с.
- 7. Мельник. Л.А., Бутник И.А., Гончарук В.В. //Химия и технология воды. 2008. т. 30, № 3. С. 304-327.
- 8. Патент UA № 76924. Мельник Л.О., Гончарук В.В., Бутник І.А. Спосіб очистки борвмісних вод. Бюл. №9, 15.09.2006.

УДК 621.928.9

Батлук В. А., Параняк Н. М., Мельников О. В., Мірус О. Л. (Україна, Львів)

ПРИНЦИПОВО НОВІ ПЕРСПЕКТИВНІ МЕТОДИ ОЧИСТКИ ПОВІТРЯ ВІД ДРІБНОДИСПЕРСНОГО ПИЛУ

Постановка проблеми. Загалом нинішню екологічну ситуацію в країні можна охарактеризувати як кризову. За даними Держкомстату, в Україні щорічно у навколишнє природне середовище надходить від 60 до 100 млн. т шкідливих речовин. У 2010 році середньорічна концентрація пилу (недиференційованого за складом) перевищувала норматив екологічної безпеки у 23 містах України [2]. За даними Мінстату України, у 1998 р. загальний обсяг викидів шкідливих речовин в атмосферне повітря становив 6,04 млн т, причому 4,16 млн т - від стаціонарних джерел забруднення, та 1,88 млн т - від автотранспорту (нестаціонарних джерел).

У всіх регіонах антропогенне навантаження у розрахунку на 1 кв. км території є значно меншим від середнього рівня по країні, а висока частка викидів без очищення свідчить про те, що на підприємствах із року в рік не вирішується проблема вловлення забруднюючих речовин [3].

На розмір та концентрацію частинок пилу в газах суттєвий вплив здійснює технологія отримання продукта. Переробка сипучих матеріалів (збагачення руди, металургійні процеси, виробництво мінеральних добрив, будівельних матеріалів, скла, кераміки, цемента та ін.) призводить до значного виділення пилу. У 2010 році зростання шкідливих викидів в атмосферу порівняно з 2009 роком сталося у 14 регіонах країни. Дані державної офіційної статистичної звітності та спеціальних досліджень свідчать про тісний зв'язок між змінами у довкіллі та станом здоров'я населення У 2010 р. порівняно з 2009 роко захворюваність населення України на бронхіальну астму зросла з 423,3 до 458,2 на 100 тис. населення, тобто на 8,4 %. Між рівнями забруднення атмосферного повітря речовинами алергенної дії (пил) і показниками захворюваності населення України на бронхіальну астму виявлено прямий тісний кореляційний зв'язок.

Львівська область ϵ досить індустріалізованою та урбанізованою, з численними джерелами забруднення довкілля шкідливими для здоров'я людини факторами. На її території розташовано 840 промислових