http://eco.com.ua Секція №2

основании данных спутниковых гравиметрических измерений нами были объяснены причины экстремальных погодных условий в России летом 2010 г.

В плане мониторинга изменений магнитосферы Земли, особенно с учетом последних официальных прогнозов аварий электрических сетей в США, опубликованных специалистами NASA (проблемы «переполюсовки» и/или усиления магнитных бурь) нами предложен практический проект снижения риска энергетического коллапса на Украине путем создания дублирующей системы обеспечения электричеством стратегически важных объектов и населения, используя существующую сеть газопроводов. Для создания дублирующей системы (резервной) целесообразно промышленное изготовление электрогенераторов на природном газе.

Выводы. Современный уровень получаемой спутниковой информации по техническим показателям позволяет успешно решать комплекс задач, связанных с глобальной геодинамикой. Основной проблемой остается недостаточный уровень интерпретации спутниковой информации, что открывает перед Украины широкий спектр перспектив в разработке спутниковых технологий и обучению.

СПИСОК ЛИТЕРАТУРЫ

- 1. Войтенко С.П., Учитель И.Л., Ярошенко В.Н., Капочкин Б.Б., Геодинамика. Основы кинематической геодезии, Одесса, 2007, 240 с.
- 2. Михайлов В.И., Капочкина А.Б., Капочкин Б.Б. Взаимодействие в системе «литосфера-гидросфера», Олесса. 2010. 154 с.
- 3. Михайлов В.И., Дорофеев В.С., Ярошенко В.Н., Капочкин Б.Б., Кучеренко Н.В., Современные изменения уровня Черного моря как основа стратегии освоения прибережий, Одесса, 2010, 165 с.
- 4. Сывороткин В.Л., Глубинная дегазация Земли и глобальные катастрофы, М., 2002, 250 с.
- 5. A New Global Mode of Earth Deformation: Seasonal Cycle Detected, Science 2001: Vol. 294. no. 5550, pp. 2342 2345 DOI: 10.1126/science.1065328

УДК 551

Учитель И.Л., Ярошенко В.Н., Капочкін Б.Б. (Украина, Одесса) ДОЛГОСРОЧНОЕ ПРОГНОЗИРОВАНИЕ ГЛОБАЛЬНЫХ ИЗМЕНЕНИЙ

Характеристика общей проблематики. Глобальные изменения – главная особенность существования нашей планеты. Геологические процессы, климат, биосферные изменения характеризуются скачкообразными изменениями от одного устойчивого состояния к другому устойчивому состоянию, причем в это характерно для всех временных масштабов. Для каждого процесса причиной таких скачкообразных изменений являются разные влияющие факторы, однако силы, формирующие глобальные изменения одни и те же. Данное исследование посвящено освещению проблемы динамики глобальных изменений вод действием внешних и внутренних влияющих факторов.

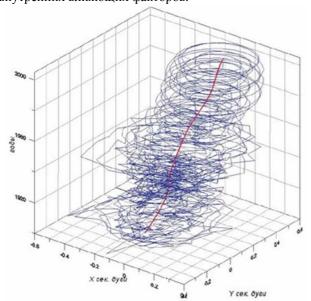


Рис. 1. Траектория запаздывания Земной коры при вращении Земли вокруг своей оси [9]

Основные исследования и публикации. Впервые синхронизация ротационных процессов, глобальной сейсмичности, глобальной геодинамики, климата и других процессов рассмотрена в монографии [9]. В этой работе на основании изменений во внутренних сферах Земли, происходящих под влиянием внешнего гравитационного воздействия на нашу планету предложен термин «геодинамическая эпоха». включающий стабильные условия существования нашей промежутках планеты В между скачкообразными изменениями. Этот термин относится к глобальным изменениям внутри 18,6 летних циклов глобальных изменений обусловленных периодическими смещениями узлов орбиты Луны. Критерием смены геодинамических эпох приняты изменения линейной скорости и радиуса смещения проекции оси вращения Земли на её поверхность, рис.1.

Физический смысл этого процесса состоит в изменении инерционности запаздывания вращения твердой оболочки (литосферы) относительно вращения пластичных внутренних сфер Земли.

Причиной изменения такой инерционности может быть цикличное изменение температуры и следственно вязкости жидких внутренних подкоровых сфер.

Такие изменения безусловно связаны с изменением ротационных эффектов, изменениями фигуры Земли

http://eco.com.ua Секція №2

(формы и объема) [6], изменениями сейсмических и геодинамических условий [1], гравитационного, геомагнитного, геотермического полей, вариациями интенсивности дегазации внутренних сфер Земли [8] и соответствующими изменениями в гидросфере, атмосфере и биосфере [5, 2].

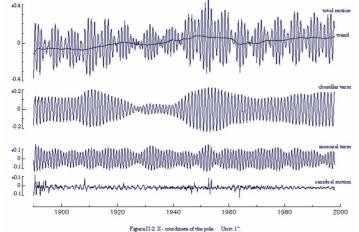


Рис. 2 Результаты измерения смещений земной коры по астеносфере с выделенным чандлеровским, годовым циклами и «остатками» [9]

2 Ha рис. показаны внутривековые изменения инерционности запаздывания вращения литосферы относительно вращения внутренних сфер Земли. Во внутривековом масштабе замедление запаздывания вращении твердой оболочки земли относительно астеносферы в 1930согласуется 1940-x годах аналогичными периодами аномальной сейсмичности положительным температурным экстремумом.

В результате комплексного анализа сейсмологических, геодинамических, астрономических и климатических измерений нами была выдвинута гипотеза о том, что Земля

испытывает дискретные глобальные изменения, синхронные с изменением радиуса чандлеровских колебаний. В работе Гришаева А.А. [3] выполнено полезное обобщение научных представлений об этом явлении и высказаны собственные критические замечания.

В конце XVIII в., Эйлером построена теория вращательного движения твёрдого тела с закреплённой точкой в отсутствие внешних сил. Помимо прецессии оси вращения, теория предсказывала также нутацию, т.е. покачивание, по отношению к оси вращения, фигуры вращающегося тела. В отличие от "вынужденной нутации" Земли, с периодом 18.6 лет, которую связывают с движением узлов орбиты Луны, "свободная нутация" Земли, по Эйлеру, обусловлена единственно эллипсоидальным сжатием её фигуры. Для периода свободной нутации Земли Эйлер получил величину примерно в 305 суток. Нашими исследованиями эта периодичность подтверждена систематическими ошибками спутниковых альтиметрических измерений (ошибки определения орбиты и/или формы геоида). Синхронные наземные геодинамические измерения не имеют этой ошибки, но включают в себя чандлеровский цикл.

На основе астрономических наблюдений выявились периодические изменения координат оси вращения. Эти изменения имели две компоненты: с постоянным годичным и переменным чандлеровским (410-435 суток) периодами. Чандлеровский период могло бы дать произведение апогей-перигейной и синодической волн [3]. Амплитуда суточных колебаний земной оси сравнима с амплитудой годично-чандлеровских колебаний [4]. Но вывод о суточных колебаниях широт не вписывается в традиционные теории вращения Земли – чем, повидимому, и объясняется игнорирование этого процесса. Фазы суточных вариаций широт на пунктах в северном и в южном полушариях скоррелированы таким образом, что «пришлось бы сделать вывод либо о том, что ось вращения Земли не является прямой, а имеет то ли изгиб, то ли излом – либо о том, что Земля не покачивается вокруг прямой оси вращения, а испытывает невероятную вращающуюся волну деформаций, с растяжением и сжатием противоположных "боков"» [3].

В последние годы IERS использует данные двух спутниковых методик – GPS-измерений и лазерной локации спутников – а также данные радиоинтерферометрии со сверхдлинными базами.

Известны два не вполне понятных феномена – изменяемость широт и вариации силы тяжести – в широком диапазоне частот коррелируют друг с другом [3].

Нами высказано предположение о том, что ось вращения Земли не изменяет своего положения, что подтверждено расчетами А.А.Гришаева, а изменения широт связаны со смещениями (отставаниями) земной коры от вращающихся внутренних сфер Земли, как отстает гидросфера и атмосфера относительно вращения литосферы. В этом случае увеличение радиуса чандлеровских колебаний Земли может быть связано со снижением вязкости астеносферы (увеличением температуры), а уменьшение радиуса этих колебаний отождествляется с «прилипанием» земной коры к астеносфере. Аномальные «прилипания» в виде петель чандлеровских колебаний («квазисингулярных» состояния). Такие состояния фиксировались в 01.1919-01.1920; 09.1926-12.1927; 02.1935-06.1935; 01.1942-01.1943; 04.1961-01.1962; 01.1967-09.1968; 03.1974-09.1974; 12.2005-02.2006 [7].

Минимальная продолжительность «квазисингулярного» состояния (2.4 мес.) наблюдалась в 2006 г., максимальная (20.4 мес.) наблюдалась в 1967-1968 гг. Интервалы между «квазисингулярными» имеют средний период 6.6 лет, или кратный ему в 2 – (12.55 лет), 3 – (19.15 лет), 4 – (24.2 лет) и 5 – (31.6 лет) раз [7]. ПономареваО.В. объясняет 6-ти летний период смены геодинамических эпох следующим образом: «узлы лунной орбиты непрерывно перемещаются по эклиптике к западу, совершая полный оборот за 18.613 г.; перигей лунной орбиты движется к востоку, совершая оборот за 8.85 г., в результате такого встречного

http://eco.com.ua Секція №2

движения соединения узла лунной орбиты с перигеем Луны происходят ровно через 6 лет. Эта же цикличность проявляется и в колебаниях полюса. Все это говорит о том, что за время эволюции Солнечной Системы скорость суточного вращения Земли и процессы, происходящие на ней, синхронизировались с циклами Солнечной Системы.».

Земля периодически «впадает» в «квазисингулярные» состояния, характеризующиеся уменьшением амплитуды и резким изменением периода колебаний полюса от 270.9 суток в 1927 г. до 628.7 суток в 1961 г.

В «квазисингулярных» состояниях, период которых равен или кратен среднему периоду 6.6 лет, полюс переставал перемещаться по овальным, гладким траекториям, резко менял направление своего движения, его траектория становилась «петлеобразной», ломаной [7]. По нашим данным в эти периоды траектория Чандлеровского колебания резко сокращалась, а длительность цикла увеличивалась. Соответственно скорость отставания земной коры от астеносферы – сокращалась. В соответствии с нашей гипотезой это связано со снижением температуры астеносферы и увеличением её вязкости. Именно изменения температуры астеносферы и формируют, по нашему мнению квантованные геодинамические эпохи, характеризующееся скачкообразными переходами в режиме сейсмичности, климата и других глобальных процессов. Геодезическими измерениями с использованием GPS технологий (перманентных геодезических сетей) подтверждены изменения тенденций геодинамических движений при смене геодинамических эпох.

Формирование задачи. Задачей настоящего исследования является изучение перехода к новой геодинамической эпохе, протекающее в 2010-2011 гг.

Полученные результаты. В результате комплексных исследований после продолжительного периода уменьшения сплющенности Земли и приближения её к сфероидальной форме «непрогнозируемые» увеличения эффекта сплющенности зафиксированы в 1998-1999 и в 2009-2011 годах. Увеличения сплющенности происходили в условиях скачкообразного увеличения угловой скорости вращения Земли в 1998 и в 2010 годах. Климатические изменения текущего периода аналогичны зафиксированным в 1998 г. Судя по заявлениям NASA, в текущем году ожидаются и соответствующие изменения магнитного поля Земли. Наиболее контрастно глобальные изменения проявляются в геодинамике нашей планеты. Наступившая в 2010 году новая геодинамическая эпоха отличается от предыдущих эпох мощным развитием асейсмических геодеформаций, которые в некоторых регионах приобрели характер национальных бедствий. асейсмические геодеформации проявляются провалами, трещинами, явлением дилатансии, провоцирующим резкие изменения уровня грунтовых вод и как следствие катастрофические засухи и наводнения регионального характера.

Выводы.

Формируемые внешними воздействиеми изменения во внутренних сферах Земли в настоящее время становятся фактором, определяющим глобальные изменения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Войтенко С.П., Учитель И.Л., Ярошенко В.Н., Капочкин Б.Б., Геодинамика. Основы кинематической геодезии, Одесса, 2007, 240 с.
- 2. Гладких І.І., Капочкін Б.Б., Кучеренко Н.В., Лісоводський В.В., Формування погодних умов в морських та прибережних районах. –монографія. Одеса, 2007. 242 С.
- 3. Гришаев А.А., Периодическое движение полюсов земли: реальность или иллюзия?, http://newfiz.narod.ru/odnomer1.htm
- 4. Куликов К.А., Изменяемость широт и долгот, М., 1962, 110 с.
- 5. Михайлов В.И., Капочкина А.Б., Капочкин Б.Б. Взаимодействие в системе «литосфера-гидросфера», Одесса, 2010, 154 с.
- 6. Михайлов В.И., Дорофеев В.С., Ярошенко В.Н., Капочкин Б.Б., Кучеренко Н.В., Современные изменения уровня Черного моря как основа стратегии освоения прибережий, Одесса, 2010, 165 с.
- 7. Пономарева О.В., О механизме возмущения периодического движения полюса Земли планетами солнечной системы, http://www.kscnet.ru/ivs/publication/volc_day/2007/art20.pdf
- 8. Сывороткин В.Л., Глубинная дегазация Земли и глобальные катастрофы, М., 2002, 250 с.
- 9. Учитель И.Л., Дорофеев В.С., Ярошенко В.Н., Капочкин Б.Б., Геодинамика. Основы динамической геодезии, Одесса, 2008, 311 с.

УДК 631.618:633.2.031

Кунах О.Н., Задорожная Г.А., Жуков А.В. (Украина, Днепропетровск)

ГИС-ТЕХНОЛОГИИ И 3-D ОПИСАНИЕ ТВЕРДОСТИ ПОЧВЫ ПРИ РЕКУЛЬТИВАЦИИ ЗЕМЕЛЬ

Уплотнение почвы может возникать в результате антропогенного воздействия (движение технологического транспорта по поверхности почвы) или естественных причин, как, например, в солонцовых почвах [8]. Уплотнение влияет на физическую структуру, плотность сложения, твердость и аэрацию почвы. Все эти свойства влияют на рост растений [10]. Такие характеристики корневых систем растений, как диаметр, длина и морфология подвержены влиянию уплотнения почвы [3]. Очень важной является задача определения масштабов уплотнения почвы в пределах поля. Полезным инструментом для её решения является пенетрометр,