http://eco.com.ua Секція №2

3. Van den Bossche W. Satellite tracking of white storks Ciconia ciconia / W. Van den Bossche, M. Katz, U. Querner // Proceedings of the 22nd International Ornithological Congress, Durban, 1999. - P. 22-23.

4. Ter Braak C.J.F. Analysis of monitoring data with many missing values: which method? // The European Union and Biodiversity [W. Hagemeijer] / C.J.F. Ter Braak, A.J. van Strien, R. Meijer. – Brussels: Friends of the Earth & EEB, 1998. - 76 p.

УДК 549

Сизо А.В., Шихалеева Г.Н., Эннан А.А. (Украина, Одесса)

ПРИМЕНЕНИЕ ГИС ДЛЯ ИНТЕГРАЛЬНОЙ ОЦЕНКИ КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД

В настоящее время географические информационные системы (ГИС) занимают важное место в решении многих проблем комплексного изучения, освоения и рационального использования природных ресурсов. Применение ГИС дает возможность рассматривать материалы полевых и лабораторных исследований в динамике с географической привязкой к месту и проводить визуализацию качества природных объектов, что является чрезвычайно важным для принятия административных решений.

В данной работе в качестве примера представлены результаты применения ГИС для интегральной оценки качества поверхностных вод в бассейне Куяльницкого лимана (Кл), известного своими уникальными по лечебной и рекреационной ценности природными ресурсами: рапой, иловыми грязями, источниками минеральной хлоридно-натриевой воды [1]. Как показали результаты комплексного систематического мониторинга в бассейне Кл [2-4], наибольшее антропогенное воздействие испытывает южная часть акватории и прибрежной зоны Кл в границах от с. Котовка до с. Корсунцы, где располагается известный грязевой курорт «Куяльник» (рис. 1). Причем, основное поступление поверхностного руслового стока (около 65%) происходит с водотоками из системы прудов Пересыпи и Корсунцовских прудов именно в южную часть акватории лимана.

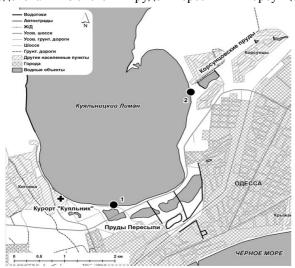


Рис. 1. Ситуационная карта-схема района исследований (1 — место впадения воды из системы прудов Пересыпи, 2 — место впадения воды из системы Корсунцовских прудов)

Материалом для оценки качества вод послужили данные регулярных гидрохимических наблюдений в период с февраля по октябрь 2010 г. по сети станций мониторинга в южной акватории Кл (курортной зоне) и впадающих в нее водотоков из системы прудов Пересыпи и Корсунцовских прудов в местах их сброса лиман. Анализ отобранных проб волы общепринятым осуществлялся ПО методикам специалистами аттестованной в области контроля поверхностных испытательной качества вод лаборатории «Мониторинг».

Для описания природных сред исследуемого региона, их параметров и системы наблюдения создана в ГИС «модель данных»: база геоданных, представляющая реальные географические объекты; тематические слои и их пространственное представление; атрибутивные данные; отношения между элементами базы геоданных; картографический материал и метаданные.

Пространственно область исследований ограниченна согласно нормам Водной Рамочной Директивы [5] водными ресурсами бассейна Кл.

Функционально систему мониторинга качества воды Кл и используемые данные можно разделить на два основных структурных блока: блок района исследования и блок объекта исследования, включая информацию и алгоритмы, необходимые либо непосредственно связанные с оценкой качества воды. Блок района исследования представляет собой совокупность алгоритмов, пространственного и атрибутивного материала, используемого в анализе, описании и моделировании параметров географических составляющих района исследования. Блок объекта исследования осуществляет информационную поддержку оценке качества воды и реализуется на основе гидрохимического блока, представляющего собой сохраненные в виде атрибутивных данных результаты анализа воды лимана и прилегающих водотоков, а также набора критериев оценки, модулей расчета и данных о расположении станций наблюдения и методологии пробоотбора. Модуль оценки качества воды позволяет проводить пространственный и временной анализ и представлять на основе гидрохимических показателей методически обоснованную интегральную информацию об уровне загрязненности водоемов бассейна Кл в виде картографического материала, табличных данных и разного рода гистограмм. Использование подхода интегральной оценки степени загрязнения позволяет в единой численной системе (либо ранговой шкале) классифицировать состояние водных объектов по степени загрязненности в удобной, доступной для понимания форме. Оценка качества вод осуществляется с помощью разработанных нами целевых расчетных модулей по

http://eco.com.ua Секція №2

двум интегральным показателям: гидрохимическому индексу загрязнения воды (ИЗВ) и удельному комбинаторному индексу загрязненности воды (УКИЗВ). Расчетные модули для оценки качества вод разработаны в программной среде ArcGIS.

ИЗВ относится к категории показателей, наиболее часто используемых для оценки качества водных объектов. Этот индекс является аддитивным коэффициентом, представляет собой среднюю долю превышения ПДК и рассчитывается строго по шести показателям, включая водородный показатель рН, легко окисляемые органические вещества (ЛОВ) по биологическому потреблению кислорода (БПК $_5$), содержание растворенного кислорода и показатели, имеющие наибольшие значения приведенных концентраций. В зависимости от величины ИЗВ водные объекты подразделяют на семь классов: от «очень чистых» до «чрезвычайно грязных» [6].

УКИЗВ представляет собой комплексный относительный показатель степени загрязненности воды, рассчитывается по наиболее распространенным в поверхностных водах загрязняющим веществам (от четырнадцати и более) и показывает долю загрязняющего эффекта, обусловленную их одновременным присутствием, от общего загрязнения. Значение УКИЗВ может варьировать в водах различной степени загрязненности от 1 до 16. Классификация качества воды, проведенная на основе значений УКИЗВ, позволяет разделять поверхностные воды на 5 классов в зависимости от степени их загрязненности: от «условно чистой» до «экстремально грязной» [7].

Учитывая, что Кл относится к лечебным водоемам и используется для рекреационных целей, нормирование и расчет интегральных показателей загрязнения поверхностных вод в бассейне лимана проводился на основе ПДК_в для водоемов хозяйственно-питьевого и культурно-бытового назначения.

Качество вод акватории южной части Кл и поступающих в нее водотоков, рассчитанное по величине ИЗВ, в 2010 г. соответствовало: для вод водотока из системы прудов Пересыпи 6 классу качества, «очень грязные» воды; водотока из системы Корсунцовских прудов и акватории южной части лимана 7 классу качества, «чрезвычайно грязные».

Метод УКИЗВ позволяет оценить загрязненность воды одновременно по более широкому перечню ингредиентов и показателей качеств воды. В нашем случае оценку качества вод в бассейне Кл проводили по 16 показателям (растворенному в воде кислороду, ЛОВ по БПК₅, фенолам, формальдегиду, нефтепродуктам, сульфатам, нитрит - ионам, нитрат - ионам, аммоний -ионам, железу общему, меди, марганцу, свинцу, кадмию, хрому). Оценка качества вод по данному методу основана на детальном покомпонентном анализе химического состава вод и расчетах оценочных составляющих, отражающих кратность и частоту превышения нормативов по каждому ингредиенту в исследуемых пробах.

Рис. 2. Изменение коэффициента комплексности К в течение 2010 г.

Проведенная оценка качества вод в бассейне Кл по значению коэффициента комплексности (рис. 2) показала, что для воды южной акватории Кл характерна загрязненность по более широкому комплексу ингредиентов показателей качества воды.

С помощью комбинаторного индекса загрязненности воды оценивается степень ее загрязненности по комплексу загрязняющих веществ.

Оценка производится по повторяемости случаев загрязненности по каждому ингредиенту и по значению кратности превышения нормативов по соответствующим оценочным баллам.

По сумме обобщенных оценочных баллов по каждому ингредиенту определяют значения комбинаторного индекса и удельного комбинаторного индекса в соответствии с которыми определяют классы качества воды.

Оценка качества вод в бассейне Kл по повторяемости случаев загрязненности (табл. 1) показала, что для вод водотоков загрязненность сульфатами, ЛОВ по $Б\Pi K_5$, формальдегидом, нефтепродуктами, марганцем, кадмием определяется как «характерная», свинцом «устойчивая».

Загрязненность южной части акватории лимана по сульфатам, ЛОВ по БП K_5 , ионам аммония, нефтепродуктам, марганцу, свинцу и кадмию определяется как «характерная».

По значению удельного комбинаторного индекса загрязненности согласно [7] вода водотоков из прудов соответствует 4 классу, разряду «а» грязных вод, южной части акватории лимана также оценивается как «грязная» и лежит на границе 4 класса, разрядов «а» и «б».

http://eco.com.ua Секція №2

Таблица 1 – Классификация воды по повторяемости случаев загрязненности для оцениваемых ингрелиентов и показателей качества волы, a%

ингреднентов и показателен ка тества воды, ч.															
Исследуемые водоемы	сульфаты	ЛОВ по БПК ₅	O_2	Нитрат-ионы	Нитрит-ионы	Аммоний-ион	Фенолы	Формальдегид	Нефтепродукты	Марганец	Медь	Свинец	Кадмий	Хром	Железо общее
Водоток из прудов Пересыпи	75	57.1						100	100	87.5		37.5	87.5		
Водоток из Корсунцовских прудов	100	42.9				12.5		57.1	85.7	75			100		
КЛ (южная часть)	100	100	42.9			85.7		14.3	100	100		57.1	100		

Примечание. а%: [10;30) – неустойчивая загрязненность, [30;50) – устойчивая, [50;100) – характерная

Выводы

Полученные результаты показали, что оценка качества вод по УКИЗВ более адекватно отражает уровень загрязненности воды и позволяет оценить как вклад каждого из загрязняющих ингредиентов в общую оценку степени загрязненности вод, так и определить критические показатели загрязненности вод, на которые необходимо обратить внимание при планировании и осуществлении водоохранных мероприятий. Так, для вод водотоков из прудов Пересыпи и Корсунцовских прудов такими критическими показателями являются формальдегид и нефтепродукты; воды южной части акватории лимана - ЛОВ по БПК₅, ионы аммония и нефтепродукты. Использование ГИС для оценки качества вод значительно упрощает работу с большим объемом материалов, позволяет проводить оперативный контроль текущего состояния водоемов, осуществлять пространственное картирование уровня загрязнения; разработанные алгоритмы расчетов значительно упрощают проведение расчетов показателей качества.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кабінет Міністрів України. Постанова від 11 грудня 1996 р. N 1499 "Про затвердження переліку водних об'єктів, що відносяться до категорії лікувальних".
- 2. Эннан А.А. и др. Экологическое состояние природной среды лиманно-морского курортного комплекса "Куяльник-Лузановка" и водной экосистемы Куяльницкого лимана. Перспективы развития. // Екологія міст та рекреаційних зон: Матеріали Всеукр. наук.-практ. конф. / під ред. В.М. Небрат. Одеса: Інноваційно-інформаційний центр "ІНВАЦ," 2009. С. 216-221.
- 3. Шихалеева Г.Н. и др. Влияние автотранспорта на состояние природной среды курортного комплекса «Куяльник-Лузановка». // Сучасні інформаційні та інноваційні технології на транспорті: Матеріали Міжнародної наук.-практ. конф. Херсон, 2009. С. 58-59.
- 4. Шихалеева Г.Н., Бабинец С.К., Редько Т.Д. Изучение динамики содержания биогенных компонентов в акватории Куяльницкого лимана. // Метеорология, климатология и гидрология. 2004. Т. 48. С. 313-321.
- 5. European Parliament and Council. DIRECTIVE 2000/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL, of 23 October 2000, establishing a framework for Community action in the field of water policy. // Official Journal of the European Communities. 2000. C. 1-73.5
- 6. Шитиков В.К., Розенберг Г.С., Зинченко Т.Д. Количественная гидроэкология: методы системной идентификации. Тольятти: ИЭВБ РАН, 2003.
- 7. РД 52.24.643—2002. МУ. Метод комплексной оценки степени загрязненности поверхностных вод по гидрохимическим показателям. С.-П.: Гидрометеоиздат, 2003.

УДК 626:504.064

Трофимчук О.М., Красовський Г.Я., Радчук В.В., Мокрий В.І. (Україна, Київ) ІНФОРМАЦІЙНО-АНАЛІТИЧНІ ТЕХНОЛОГІЇ ДОСЛІДЖЕННЯ ОЗЕР ШАЦЬКОГО НПП

Першочерговими завданнями Шацького національного природного парку (НПП) є збереження озернолісового комплексу Шацького приозер'я та розвиток його рекреаційного використання. Третє десятиріччя функціонування Шацького НПП відзначається активізацією рекреаційних навантажень на озера і прилеглі території, тому застосування інформаційних технологій для оцінки еколого-відновлювального потенціалу водних екосистем та управління природокористуванням у Шацькому НПП [1] є актуальним.

Важливість належного інформаційного забезпечення управління Шацьким національним природним парком особливо зросла у зв'язку з Рішенням ЮНЕСКО від 30.04.2002 року про включення Шацького НПП та прилеглих до нього територій Транскордонного екологічного коридору у світову мережу заповідників